Partnering to Advance Life Sciences

Combining high-throughput, discovery metabolomics approach with expert scientific guidance to enable biomarker discovery, deep insight into disease, treatment effect and outcome

Metabolon is an industry leading partner of discovery metabolomics providing complete research services including expert study design, data generation, full interpretation and post study analysis tools. Metabolon has conducted more than 3000 client studies with more than 600 organizations and contributed to more than 350 peer-reviewed publications.

Study design inquiries: info@metabolon.com

metabolon.com

Practical Applications of Metabolomics -

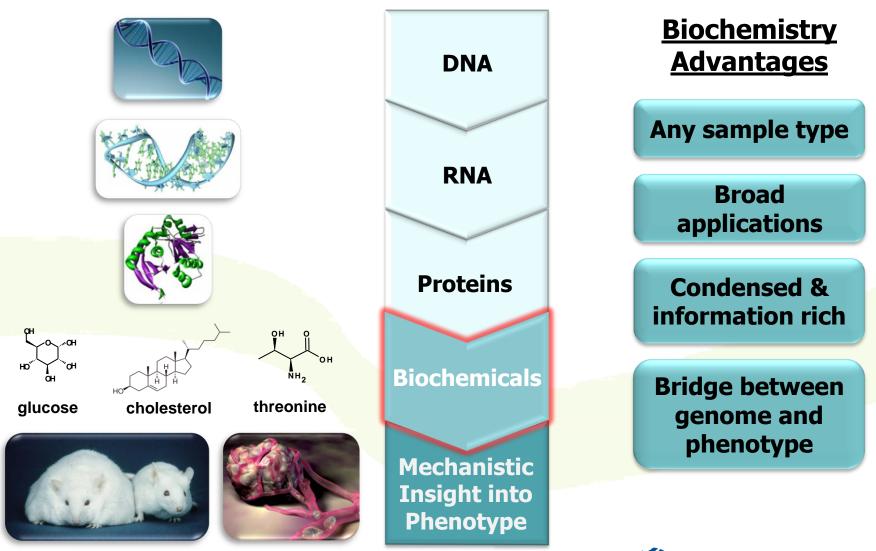
Fundamentals in Metabolomic Technology and Application

Edward Karoly Associate Director, Project Management Academics June 2, 2014

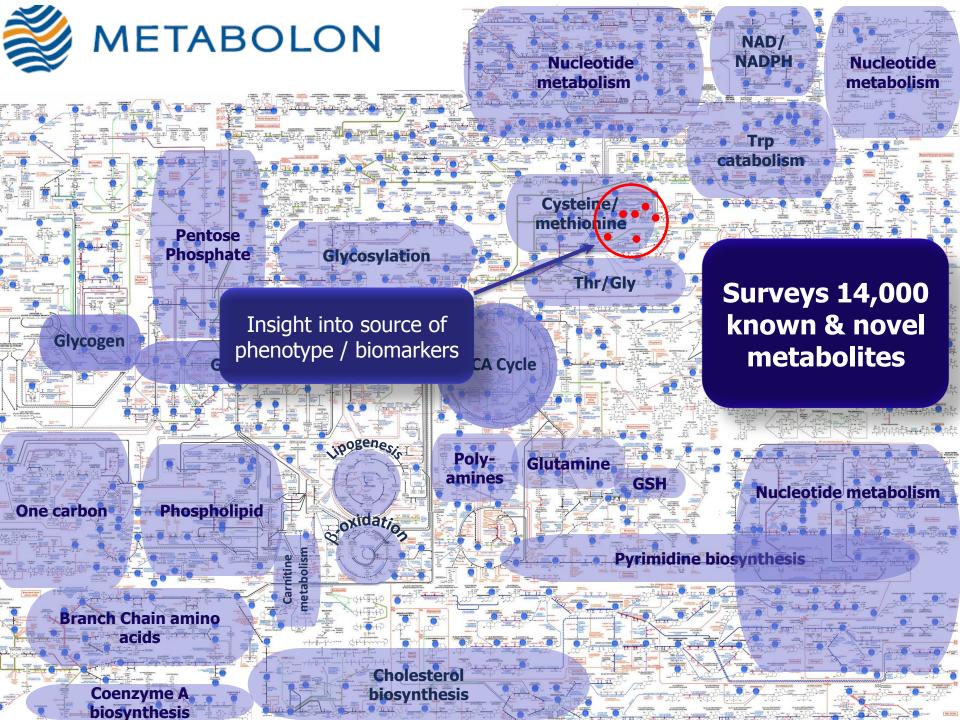
ekaroly@metabolon.com

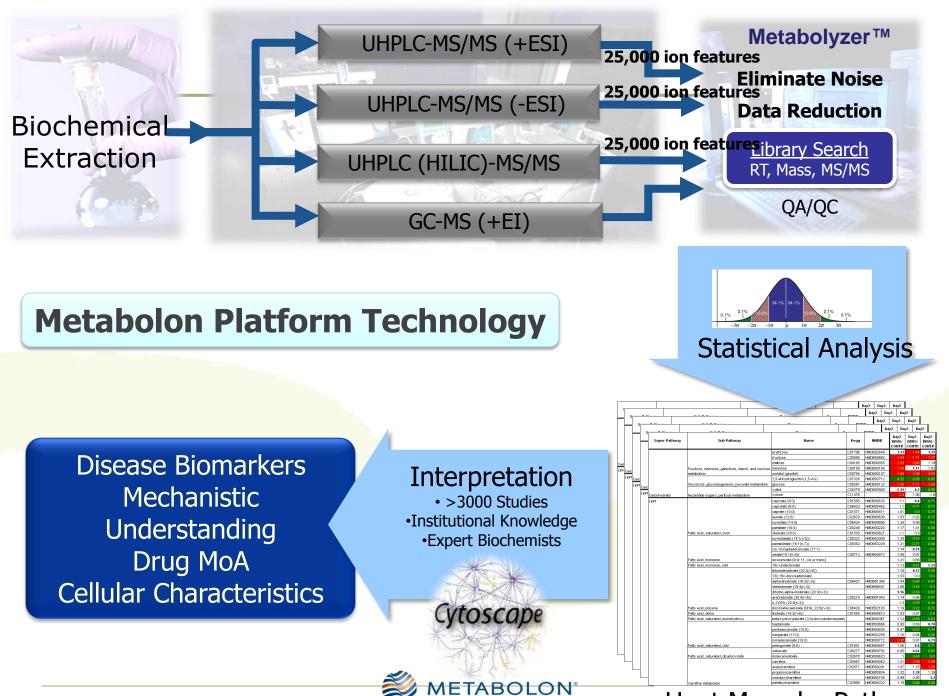
00

Pioneer and leader in metabolomics:

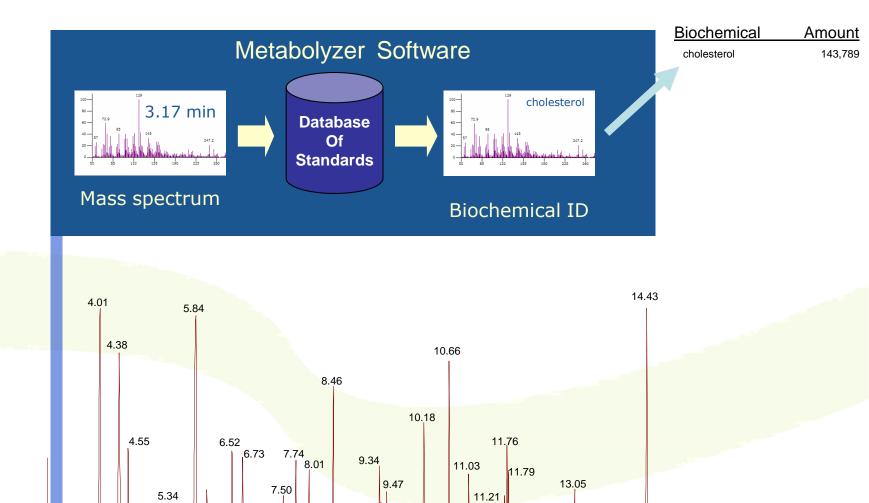

- 60+ issued patents
- >350+ peer-reviewed publications
- Founded in 2003 in RTP, NC (150+ employees)
- Worldwide operations (Asia, Europe, US)
- Over 550 clients and >3000 studies
- Completed 600 client studies

Science & technology-driven company providing biological insight through global biochemical profiling



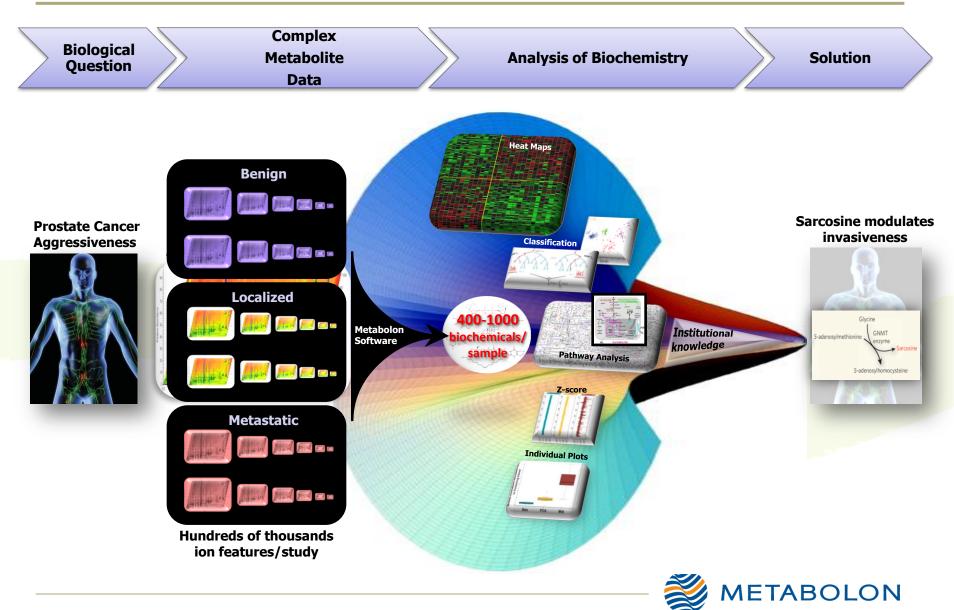


Focus on Metabolism



Heat Maps by Pathway

Proprietary Software: Automated Biochemical Identification



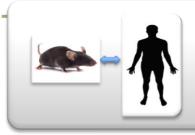
12.89 13.30

7 8

Time (min)

Advancing biology through understanding metabolism

Compatibility & Integration With Other 'Omics Data


Recent work has re-ignited an interest in metabolism, particularly since it has shown that it can bolster genomic, transcriptomic & proteomic inquiry, serving as a key integrator of these data.

Examples of metabolomics producing clarity & focus in other 'omics data: sets

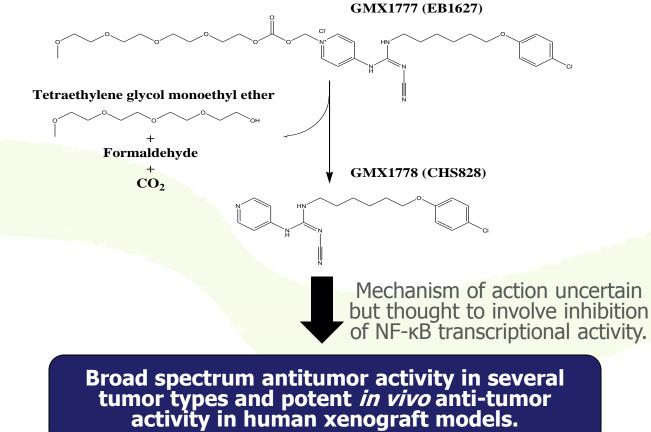
Theme	Key Finding	Reference
Brain cancer	Revealed the functional defect of mutant IDH1 enzyme and a potential marker for imaging	Dang et al., 2009; Reitman et al., 2011
Prostate cancer	Identified a pathway (sarcosine) of aggressiveness, focusing molecular biology follow-up work	Sreekumar et al., 2009; Song et al., 2011
Glycine metabolism in cancer	Provided focus within large cancer genomic database to reveal novel cancer driving pathway	Jain et al., 2012
GWAS studies	Landmark work re-awakened researchers to the value of metabolites to strengthen genomics	Suhre et al., 2011, 2014
Metabolic disease & SREBP-1 metabolism	Produced focus & potential targets for hepatic dysfunction in obesity & metabolic syndrome	Walker et al., 2011
Fungicidal drugs	Clarified & strengthened gene expression findings to reveal new antifungal targets	Belenky et al., 2013
Obesity	Provided support for a new paradigm for obesity driven by timing of feeding	Hatori et al., 2012
Metabolic disease & ER stress	Revealed that PEMT is a key player in ER stress	Fu et al., 2011
Metabolic disease - Ghrelin/GOAT	Revealed an unanticipated role for the Ghrelin/GOAT system in the regulation of bile acid metabolism	Kang et al., 2012

Translatability of Metabolites

Biochemical pathways are highly conserved and, hence, metabolites are particularly translatable across species. Biomarkers identified in preclinical models have a high likelihood of being relevant in human disease.

Examples of metabolomics results with striking translatability:

Theme	Key Finding	Reference
Diabetes	Markers showed exquisite translatability in IR/diabetic cats	Gall et al., 2010 & unpublished data
Sickle cell disease	Markers that define a new target in SCD are concordant in SCD patient plasma	Zhang et al., 2010
Niemann-Pick C1	Markers translated across multiple species & tracked with treatment	Porter et al., 2010
Kidney cancer	Strongly concordant signatures between humans & animal models	Kim et al., 2011; Ganti et al., 2012
Chronic lymphocytic leukemia (CLL)	Biomarkers from chronic lymphocytic leukemia (CLL) patients exhibited translatability to in vitro models	Tili et al., 2012
Fatty liver disease	Strongly concordant signatures between humans & animal models in this series of studies	Watkins et al., 2003; Puri et al., 2007, 2009; Kalhan et al., 2011; Fu et al., 2011
Atherosclerosis	Identified optimal animal models(s) for drug R&D & the pathways that translated across multiple species	Yin et al., 2012
Ovarian cancer	Markers concordant with those detected in a precisely constructed mouse model	Fong et al., 2011; Szabova et al., 2012
Testicular toxicity	Pathways in animal model that caused tox were the same as a human genetic disorder	Takei et al., 2010



Finding a Drug's Mechanism of Action

Gemin X

GMX1777/1778 Background

- GMX1777 is a soluble pro-drug which is rapidly converted *in vivo* to GMX1778, the active cyanoguanidinopyridine.
- In-licensed by GeminX from Leo Pharma in 2006 (progressed to clinical trials).

Study Design and Initial Results

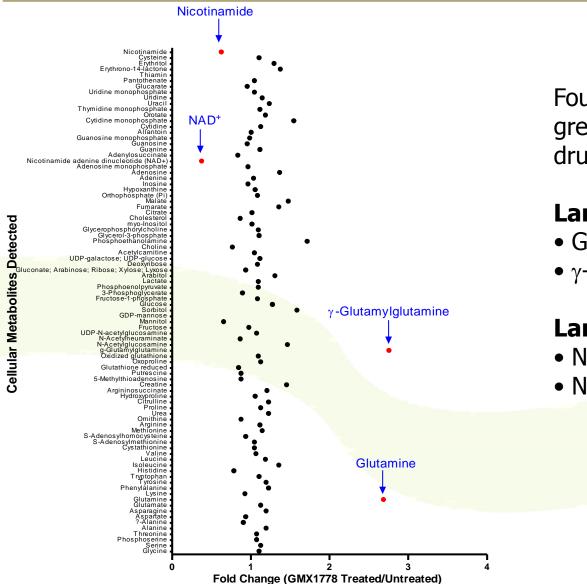
Experimental Details

- Dexamethasone resistant cells (multiple myeloma line IM-9)
- Dosing according to following (cultures per group):

Time Dose	6 hr	13 hr	20 hr	27 hr
DMSO	6	6	6	6
Drug	6	6	6	6

Results of Global Biochemical Profiling

		6hr	13hr	20hr	27hr
Significantly Altered Biochemicals $p \le 0.1$, q-value ≤ 0.2	Increased	25 38 5		58	45
	Decreased	2	8	7	20
	Total	27	46	65	65


Drug Effects Biochemicals & Pathways

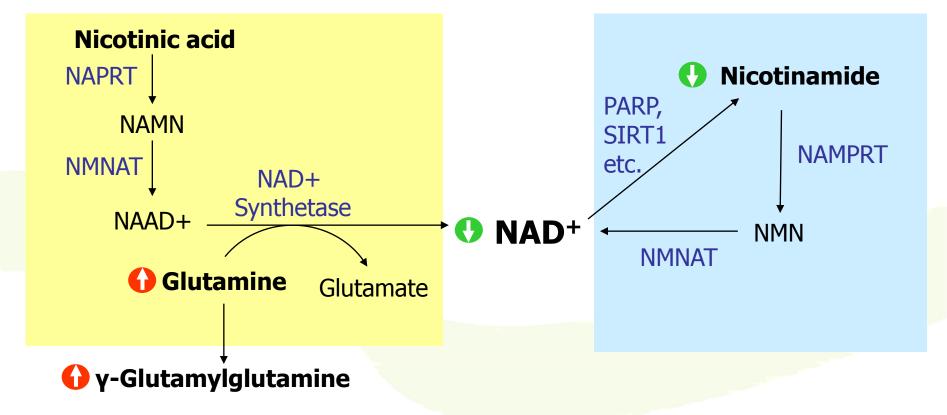
Pathway	Sub Pathway	Pathway Biochemical Name		HMDB	6 hr	13 hr	20 hr	27 hr
		N-acetylgalactosamine	<u>C01074</u>	HMDB00835	1.47	1.07	0.99	0.81
	Aminosugars metabolism	N-acetylneuraminate	<u>C00270</u>	HMDB00230	0.87	1.39	1.09	0.80
		UDP-N-acetylgalactosamine	<u>C00203</u>	HMDB00290	1.08	1.26	0.80	0.43
		fructose	<u>C00095</u>	HMDB00660	0.98	0.46	1.83	18.13
	Fructose, mannose, galactose,	mannitol	<u>C00392</u>	HMDB00765	0.66	1.00	1.01	1.80
	starch, and sucrose metabolism	GDP-mannose	C00096	HMDB01163	1.00	0.70	1.67	1.55
Carbohydrate		sorbitol	<u>C00794</u>	HMDB00247	1.59	3.82	17.15	22.68
Metabolism		glucose	<u>C00031</u>	HMDB00122	1.28	1.11	1.61	1.22
		fructose 1-phosphate	<u>C01094</u>	HMDB01076	1.09	1.79	3.15	30.52
	Glycolysis, gluconeogenesis, pyruvate metabolism	3-phosphoglycerate	<u>C00597</u>	HMDB00807	0.90	1.18	1.59	2.81
		phosphoenolpyruvate (PEP)	<u>C00074</u>	HMDB00263	1.10	1.06	1.20	2.36
		lactate	<u>C00186</u>	HMDB00190	1.10	0.81	2.92	2.43
	Nucleotide sugars, pentose	arabitol	<u>C00474</u>	HMDB01851	1.31	1.36	1.78	1.27
	metabolism	2-deoxyribose	<u>C01801</u>	HMDB03224	1.09	2.01	2.89	1.68
	Carnitine metabolism	acetylcarnitine	<u>C02571</u>	HMDB00201	1.05	0.80	1.57	0.92
		phosphoethanolamine	<u>C00346</u>	HMDB00224	1.72	1.75	2.68	8.00
	Glycerolipid metabolism	choline			0.77	1.37	1.87	1.87
Lipid Vletabolism		glycerol 3-phosphate (G3P)	<u>C00093</u>	HMDB00126	1.11	1.09	1.16	1.18
notabolioni		glycerophosphorylcholine (GPC)	<u>C00670</u>	HMDB00086	1.09	0.97	2.37	2.72
	Inositol metabolism	myo-inositol	<u>C00137</u>	HMDB00211	1.02	1.19	1.39	1.71
	Sterol/Steroid	cholesterol	<u>C00187</u>	HMDB00067	0.87	1.13	1.46	1.14
		citrate	<u>C00158</u>		1.02	0.64	0.51	0.27
Energy	Krebs cycle	fumarate	C00122	HMDB00134	1.36	1.79	3.35	2.44
Metabolism		malate	<u>C00149</u>	HMDB00156	1.48	1.87	4.13	2.68
	Oxidative phosphorylation	phosphate	<u>C00009</u>	HMDB01429	1.09	1.18	1.30	1.30
	Purine metabolism,	hypoxanthine	<u>C00262</u>	HMDB00157	1.06	1.35	1.17	0.80
	(hypo)xanthine/inosine containing	inosine			0.97	1.24	0.99	0.82
		adenine	<u>C00147</u>	HMDB00034	1.04	1.30	1.19	2.74
Nucleotide		adenosine	C00212		1 37	1.53	0 72	0.81
Vletabolism	Purine metabolism, adenine containing	nicotinamide adenine dinucleotide (NAD+)	<u>C00003</u>	HMDB00902	0.38	0.09	0.03	0.01
		adenosine 5'-monophosphate (AMP)	<u>C00020</u>	HMDB00045	0.97	1.08	1.02	0.59
		adenylosuccinate	C03794	HMDB00536	0.84	1.30	9.89	15.05
F			C00242	111 10000100	0.07	1 00	1 01	1 00

2

Changes in Global Metabolic Profile Six hours after GMX1778 Treatment

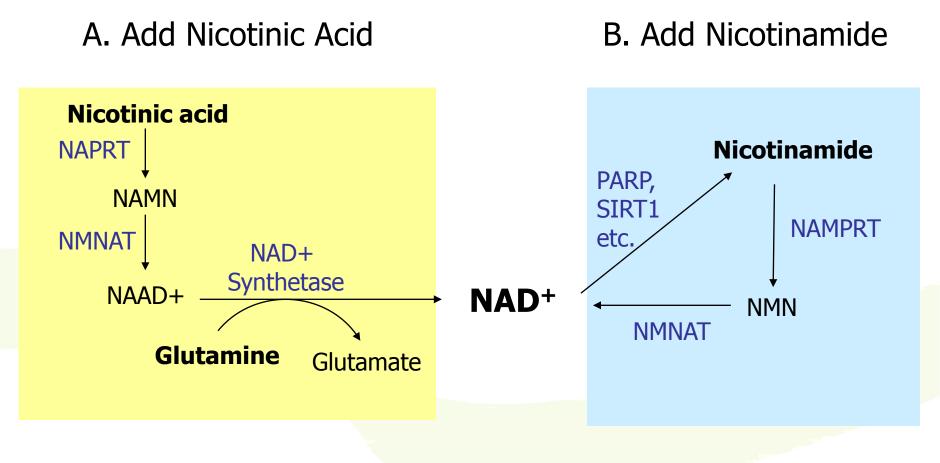
Four biochemicals showed greatest change after 6 hours of drug treatment:

Largest Increase

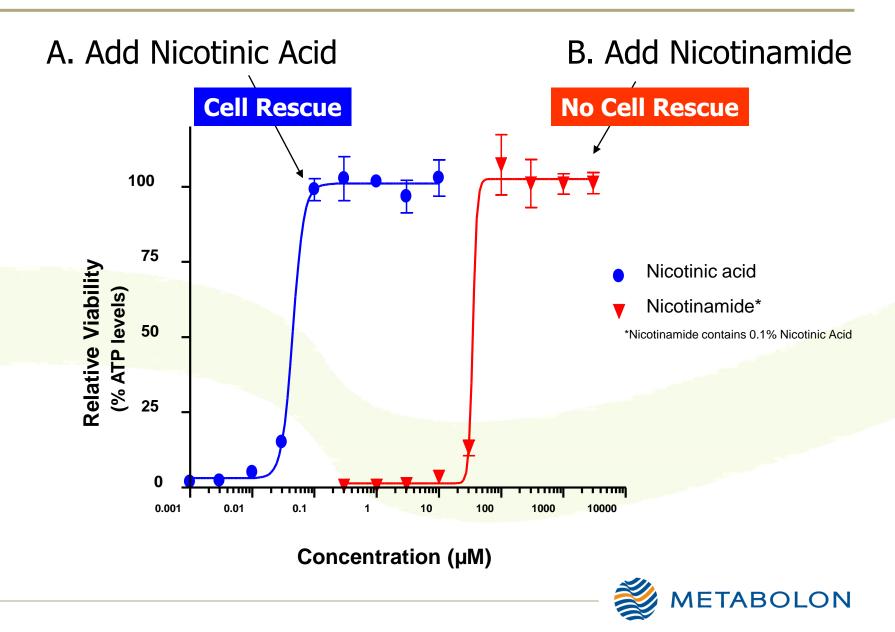

- Glutamine (2.7 fold)
- γ-Glutamylglutamine (2.8 fold)

Largest Decrease

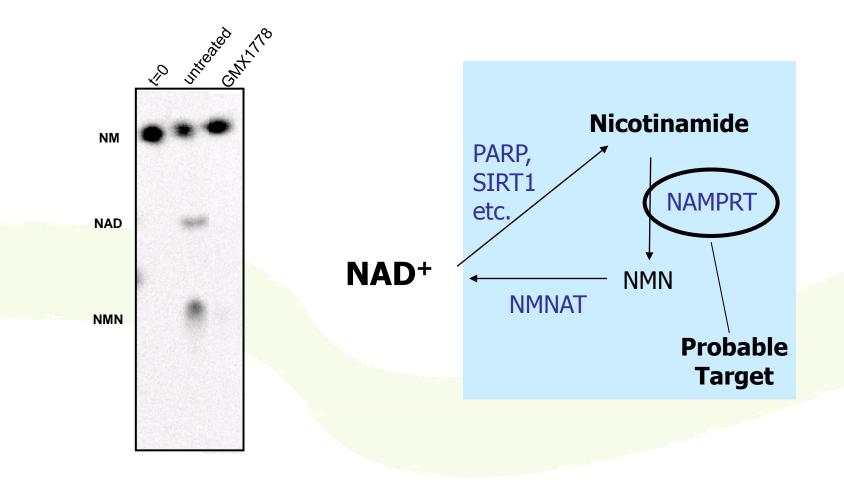
- Nicotinamide (0.7 fold)
- NAD+ (0.38 fold)



NAD⁺ Biosynthesis Two Pathways



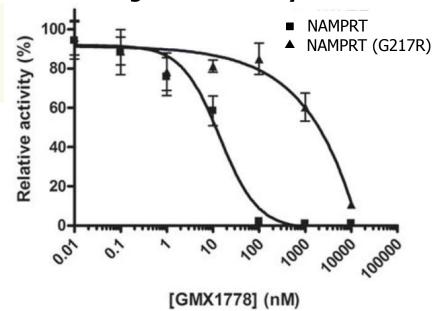
Cell Rescue Experiments

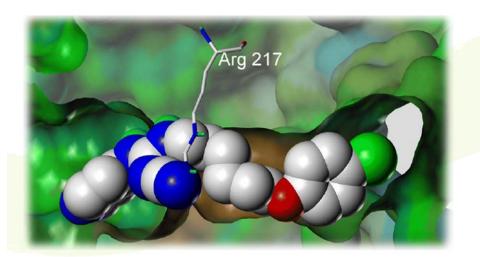


Cell Rescue Experiments

Drug Inhibits NAD+ Synthesis from Nicotinamide

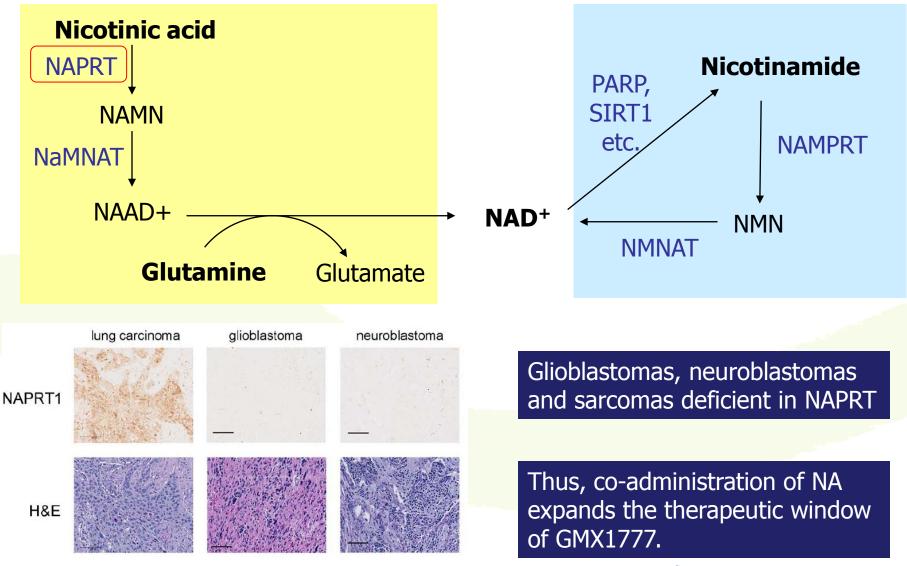
¹⁴[C] Nicotinamide in HeLa Cells

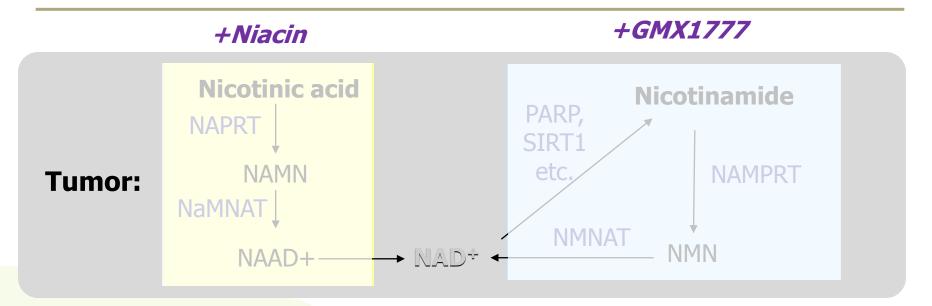


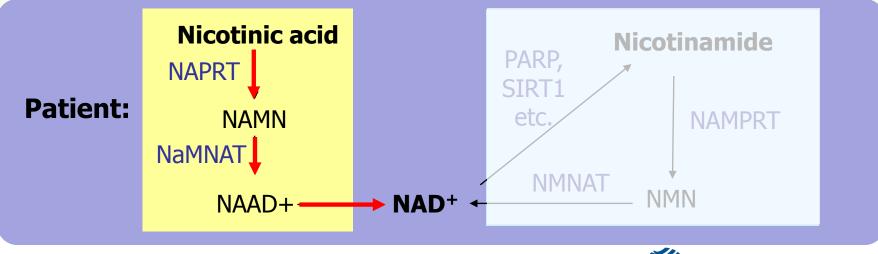


NAMPRT Confirmed as Drug Target

Compound	Ki (nM) Recombinant	IC ₅₀ (nM) Cell viability assay (72h) IM-9 HCT-116 (Multiple myeloma) (Colon)	
	NAMPRT		
GMX1778	2.60	3.33 ± 0.66	2.30 ± 0.64


Drug resistant enzyme




NAD⁺ Synthesis – Cancer Cells

NAD⁺ Synthesis – Cancer Cells

Summary of GMX1777 Study

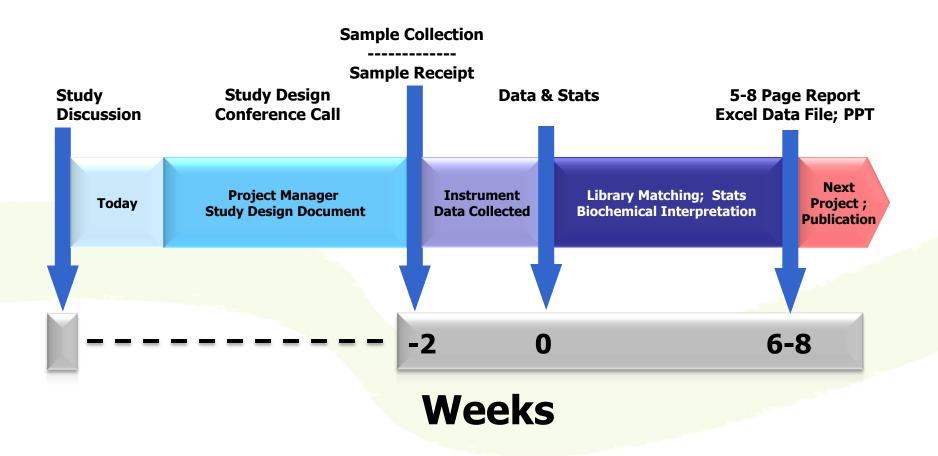
- The primary mechanism of the drug action was proposed through understanding global metabolic changes
- Simple, yet powerful validating experiments were performed to conclusively show NamPRT as the drug target
- Understanding the metabolism also aided in elucidating new clinical development paths forward

Acknowledgements

GeminX

- Anne Roulston
- Mark Watson

Metabolon


- Alvin Berger
- Matt Mitchell

Mark Watson,1*[†] Anne Roulston,1[†] Laurent Bélec,1 Xavier Billot,1 Richard Marcellus,1 Dominique Bédard,1 Cynthia Bernier,1 Stéphane Branchaud,1 Helen Chan,1 Kenza Dairi,1 Karine Gilbert,1 Daniel Goulet,1 Michel-Olivier Gratton,1 Henady Isakau,1 Anne Jang,1 Abdelkrim Khadir,1 Elizabeth Koch,1 Manon Lavoie,1 Michael Lawless,1 Mai Nguyen,2 Denis Paquette,1 Émilie Turcotte,1 Alvin Berger,3[‡] Mathew Mitchell,3 Gordon C. Shore1,2 and Pierre Beauparlant1, **The Small Molecule GMX1778 is a Potent Inhibitor of NAD+ Biosynthesis: Strategy for Enhanced Therapy in NAPRT1-Deficient Tumors, MCB (2009) Nov;29(21):5872-88**

Beauparlant, Pierre; Bedard, Dominique; Bernier, Cynthia; Chan, Helen; Gilbert, Karine; Goulet, Daniel; Gratton, Michel-Olivier; Lavoie, Manon; Roulston, Anne; Turcotte, Emilie; Watson, Mark. **Preclinical development of the nicotinamide phosphoribosyl transferase inhibitor prodrug GMX1777. Anti-Cancer Drugs (2009), 20(5), 346-354.**

Pathway of an mView Project

Today

Study Director consultation Study design document

Suggested Sample Sizes by Tangible Outcome

	Bioreactor	Traditional cell culture	Small animals	Large animals	Human Studies
Optimal	6 - 8	8 - 10	10 - 15	12 - 20	>50
Rigorous	4 - 6	6 - 8	8 - 10	10 - 12	40 - 50
Good/acceptable	3 - 4	4 - 6	6 - 8	8 - 10	25 - 40
Acceptable but potentially noisy	N/A	3 - 4	4 - 6	6 - 8	20 - 25
Not likely to return powerful statistical results	N/A	N/A	3	4 - 5	<20

Today

Study Director consultation Study design document

Initial data (1) month from platform

	FOLD CHANGE (CONTROL CELLS)							
BIOCHEMICAL NAME	D4 / D0	D7 / D0	D9 / D0	D11 / D0	D14 / D0	D14 / D11		
glycine	0.98	0.77	0.80	0.54	0.38	0.71		
serine	0.95	0.55	0.80	0.93	1.37	1.47		
homoserine (homoserine lactone)	4.08	11.51	13.39	13.81	9.88	0.72		
threonine	1.91	2.48	2.42	2.25	1.85	0.82		
N-acetylthreonine	1. 1 2	1.04	1.24	1.08	1.48	1.37		
allo-threonine	1.18	1.71	1.77	1.60	2.14	1.33		
alanine	2.26	0.76	0.44	0.63	0.39	0.62		
beta-alanine	1.97	1.55	2.19	2.99	2.78	0.93		
aspartate	0.15	0.08	0.12	0.07	0.08	1.20		
asparagine	0.26	0.05	0.07	0.05	0.05	0.84		
glutamate	0.58	0.65	0.60	0.63	0.48	0.76		

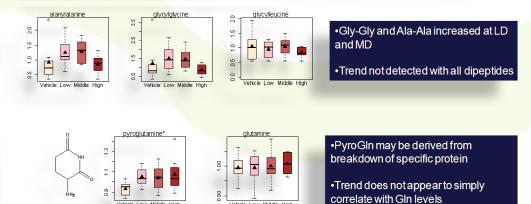
Today

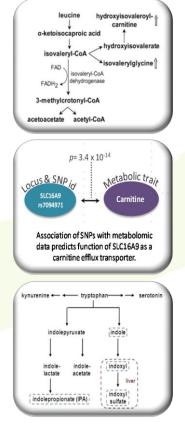
PCA

Study Director consultation Study design document

Initial data (1) month from platform

Data / report


discussion


with customer

Dipeptides and Pyroglutamine

Exhibiting strong dose response curves, the dipeptides alanylalanine, glycylglycine are detected in the hypothalamus (Fig. 8). Either these are increased due to a general increase in dipeptides or they are specifically increased due to production or catabolism of peptides/proteins with these motifs. The first point is refuted since another dipeptide (Gly-Leu) detected in this study fails to exhibit this same pattern. Possibly, the increase in alanylalanine and glycylglycine may be reflective of something more specific?

The brain is rich in neuropeptides and the processing of signal sequences and their catabolism is paramount for timely dosing of these molecules. Although these two dipeptides are far too generic to draw any firm conclusions, the possibility that they are from specific neuropeptides should be considered. For example, a delta sleep-inducing peptide (DSIP) is related to the topic described above (sleep) has a GG motif (Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu). Orexin is a neuropeptide involved in sleep and wakefulness and it has an Ala-Ala motif. Also pyroglutamine could be a product of proteolysis from a specific peptide (note, it is not simply a product of Gln since Gln does not change at all, Fig. 8).

e e

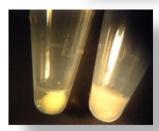
Today

Study Director consultation Study design document Initial data (1) month from platform

th Data / report th discussion orm with customer

Next project / publication

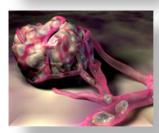
Visit <u>www.metabolon.com</u>


- GWAS (Serum Biochemicals and SNP Associations)
- Role of Adenosine Signaling in Sickle Cell Disease
- Metabolic Impact of IDH1 Mutations
- Metabolon's Technology Paper
- Prostate Cancer Biomarker Discovery
- Discovery of Novel Anticancer Drug Mechanism
- Drug Toxicity Studies with Mitsubishi and Teva
- Biomarkers of Depression
- Biomarkers of Dental Disease
- Human Metabolome Paper on Aging
- NASH Biomarker Discovery Paper
- Preterm Labor Biomarkers
- Prediction of Liver Dysfunction Biomarkers with Choline Diet
- Mechanism of Toxicity with EGME

Elements of Successful Study Design

Study Material

Statistical Power


Cell-Based Studies 50-100µl packed cell pellet

Biological Fluids 100-200µl plasma, urine

Tissues

50-100mg

Recommended Samples per Group **Cell lines** 4-7 Small 6-10 animal Large 8-15 animals Human 25-40

Sample quantity and group size impact study results

